The serine 106 residue within the N-terminal transactivation domain is crucial for Oct4 function in mice.
نویسندگان
چکیده
Pou5f1/Oct4 is a key transcription factor for the induction of pluripotency and totipotency in preimplantation mouse embryos. In mice, loss or gain of function experiments have demonstrated an important role for Oct4 in preimplantation and developmental ability. In this study, using mouse preimplantation embryos as a model for the evaluation of Oct4 function, we constructed Oct4 overexpression embryos with various mutations at the N-terminal transactivation domain. Developmental competency and molecular biological phenotypes depended on the type of mutation. The replacement of serine 106 with alanine resulted in more severe phenotypes similar to that of wild type Oct4, indicating that this alteration using alanine is negligible for Oct4 function. In contrast, we found that Oct4-specific antibodies could not recognize Oct4 protein when this residue was replaced by aspartic acid (Oct4-S106D). Oct4-S106D overexpressing embryos did not show developmental arrest and aberrant chromatin structure. Thus, these results demonstrated that the Ser-106 residue within the N-terminal transactivation domain is crucial for Oct4 function and suggested that this mutation might affect Oct4 protein conformation.
منابع مشابه
Ab Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملImmunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E
Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...
متن کاملP-92: Assessment of Stem Cells in Adult Mouse Ovaries during Estrous Cycle
Background: The concepts of reproductive biology were changed by stating the ovarian reserve in postnatal mammalian females is replenished. The aim of this study was to investigate the expression of OCT4 in the mice ovarian tissue during different stages of mouse estrous cycle. Materials and Methods: The mice were considered as pro-estrous, estrous, met-estrous and di-estrous based on the cell ...
متن کاملFAST ATOM BOMBARDMENT MASS SPECTROMETRY (FABMS) ANALYSIS OF AN N- TERMINAL - BLOCKED PEPTIDE
FABMS analysis of T-lb peptide before and after one cycle of Edman degradation indicated an unblocked N-terminal Thr residue for this tryptic peptide. In contrast , our data showed a molecular protonated ion, MH + for T- la peptide at 655 mass units (mu) which is 42 mu higher than the MH ion of T- 1b peptide. In addition, T- la peptide was not amenable to one cycle of manual Edman degrada...
متن کاملA novel, transformation-relevant activation domain in Fos proteins.
We have previously demonstrated that transformation by Fos is critically dependent on an intact DNA-binding domain (bZip) and a functional N-terminal transactivation motif (N-TM). We now show that a novel motif (C-terminal transactivation motif [C-TM]) near the C terminus also plays an important role in both transformation and the activation of AP1-dependent transcription and that the hydrophob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zygote
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2017